19 research outputs found

    Evaluation of SLOG/TCI-III pediatric system on target control infusion of propofol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The target-controlled infusion-III (SLOG/TCI-III) system was derived from a model set up by the local pediatric population for target control infusion of propofol.</p> <p>Methods</p> <p>The current study aimed at evaluating the difference between target concentrations of propofol and performance, which was measured using the SLOG/TCI-III system in children. Thirty children fulfilling the I-II criteria according to American Society of Anesthesiology were enrolled in the study. The target plasma concentration of propofol was fed into the SLOG/TCI-III system and compared with the measured concentrations of propofol. Blood samples were collected and analyzed by high performance liquid chromatography with fluorescence detector. The performance error (PE) was determined for each measured blood propofol concentration. The performances of the TCI-III system were determined by the median performance error (MDPE), the median absolute performance error (MDAPE), and Wobble (the median absolute deviation of each PE from the MDPE), respectively.</p> <p>Results</p> <p>Concentration against target concentration showed good linear correlation: concentration = 1.3428 target concentration - 0.2633 (r = 0.8667). The MDPE and MDAPE of the pediatric system were 10 and 22%, respectively, and the median value for Wobble was 24%. MDPE and MDAPE were less than 15 and 30%, respectively.</p> <p>Conclusions</p> <p>The performance of TCI-III system seems to be in the accepted limits for clinical practice in children.</p

    Off-line evaluation of indoor positioning systems in different scenarios: the experiences from IPIN 2020 competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018. Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026. Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091. Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190. Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU). Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762. Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202. Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001

    Off-Line Evaluation of Indoor Positioning Systems in Different Scenarios: The Experiences From IPIN 2020 Competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018. Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026. Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091. Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190. Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU). Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762. Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202. Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001.Peer reviewe

    Critical Review of Methods to Estimate PM2.5 Concentrations within Specified Research Region

    No full text
    Obtaining PM2.5 data for the entirety of a research region underlies the study of the relationship between PM2.5 and human spatiotemporal activity. A professional sampler with a filter membrane is used to measure accurate values of PM2.5 at single points in space. However, there are numerous PM2.5 sampling and monitoring facilities that rely on data from only representative points, and which cannot measure the data for the whole region of research interest. This provides the motivation for researching the methods of estimation of particulate matter in areas having fewer monitors at a special scale, an approach now attracting considerable academic interest. The aim of this study is to (1) reclassify and particularize the most frequently used approaches for estimating the PM2.5 concentrations covering an entire research region; (2) list improvements to and integrations of traditional methods and their applications; and (3) compare existing approaches to PM2.5 estimation on the basis of accuracy and applicability

    Forecasting of Coalbed Methane Daily Production Based on T-LSTM Neural Networks

    No full text
    Accurately forecasting the daily production of coalbed methane (CBM) is important forformulating associated drainage parameters and evaluating the economic benefit of CBM mining. Daily production of CBM depends on many factors, making it difficult to predict using conventional mathematical models. Because traditional methods do not reflect the long-term time series characteristics of CBM production, this study first used a long short-term memory neural network (LSTM) and transfer learning (TL) method for time series forecasting of CBM daily production. Based on the LSTM model, we introduced the idea of transfer learning and proposed a Transfer-LSTM (T-LSTM) CBM production forecasting model. This approach first uses a large amount of data similar to the target to pretrain the weights of the LSTM network, then uses transfer learning to fine-tune LSTM network parameters a second time, so as to obtain the final T-LSTM model. Experiments were carried out using daily CBM production data for the Panhe Demonstration Zone at southern Qinshui basin in China. Based on the results, the idea of transfer learning can solve the problem of insufficient samples during LSTM training. Prediction results for wells that entered the stable period earlier were more accurate, whereas results for types with unstable production in the early stage require further exploration. Because CBM wells daily production data have symmetrical similarities, which can provide a reference for the prediction of other wells, so our proposed T-LSTM network can achieve good results for the production forecast and can provide guidance for forecasting production of CBM wells

    Using key informant method to assess the prevalence and causes of childhood blindness in Xiu'shui County, Jiangxi Province, Southeast China.

    No full text
    BACKGROUND: Although childhood blindness is relatively rare, it is the leading cause of blind person years besides cataract. The aim of this study is to estimate the prevalence and causes of childhood blindness and severe visual impairment (BL/SVI) in southeast China. METHODS: The study took place across four administrative units in Xiu'shui County. Sixty key informants were trained by an ophthalmologist to identify possible cases of childhood BL/SVI (children < 16 years with presenting visual acuity < 6/60 in the better eye) in their own communities. The possible cases were referred to a hospital for further examination by a pediatric ophthalmologist, to ascertain case status and determine the cause of BL/SVI. RESULTS: In total we found 8 cases of childhood BL/SVI from a total population of approximately 27,000 children. The prevalence of childhood BL/SVI was therefore 0.3/1000 (95% Confidence Interval [CI]: 0.1-0.5/1000). The prevalence of blindness (< 3/60) was 0.2/1000 (95% CI: 0.04/1000-0.4/1000) and the prevalence of SVI (< 6/60-3/60) was 0.07/1000 (95% CI: 0-0.17/1000). The main cause of BL/SVI was posterior segment disease (87.5%). Half of the cases were potentially treatable. CONCLUSIONS: The study has documented a low prevalence of childhood BL/SVI in southeast China. Despite the low prevalence, half of the cases were potentially treatable if earlier medical action was taken, suggesting the prevalence could be reduced further still. The Key Informant Method is simple to implement and an efficient method for case finding in China
    corecore